Arduino Code for ROV Underwater Unit

Compliments to Wynston Chew for assisting me in compiling the Arduino Code, and compliments to Bill Porter for research and Development with the PlayStation Two Controller and Arduino Communications.  
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 MotorControl.pde
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#include "EasyTransfer.h"
#include "IOpinsROV.h"

//create object for recieving bytes.
EasyTransfer ET;

struct RECEIVE_DATA_STRUCTURE{
  //put your variable definitions here for the data you want to receive
  //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO
  int left;
  int right;
  int up;
  int arm;
  int brake;
};

//give a name to the group of data
RECEIVE_DATA_STRUCTURE mydata;

int Leftmode=1;                                               // 0=reverse, 1=brake, 2=forward
int Rightmode=1;                                              // 0=reverse, 1=brake, 2=forward
int Upmode=1;
int LeftPWM;                                                  // PWM value for left  motor speed / brake
int RightPWM;                                                 // PWM value for right motor speed / brake
int UpPWM;

void setup(){
  Serial.begin(9600);
  //start the library, pass in the data details and the name of the serial port. Can be Serial, Serial1, Serial2, etc.
  ET.begin(details(mydata), &Serial);
 
  pinMode(13, OUTPUT);
 
}

void loop(){
  //check and see if a data packet has come in.
  if(ET.receiveData()){
    //this is how you access the variables. [name of the group].[variable name]
    //since we have data, we will blink it out.
    if (mydata.brake = 1) {
      analogWrite(LmotorA,min(abs(mydata.brake),255));
      analogWrite(LmotorB,min(abs(mydata.brake),255));
      analogWrite(RmotorA,min(abs(mydata.brake),255));
      analogWrite(RmotorB,min(abs(mydata.brake),255));
      analogWrite(UmotorA,min(abs(mydata.brake),255));
      analogWrite(UmotorB,min(abs(mydata.brake),255));
      break;
    } else {
      if (mydata.left <= -50) {
        analogWrite(LmotorA,min(abs(mydata.left),255));
        analogWrite(LmotorB,0);
        break;
      } else if (mydata.left >= 50) {
        analogWrite(LmotorA,0);
        analogWrite(LmotorB,min(abs(mydata.left),255));
        break;
      } else {
        analogWrite(LmotorA,0);
        analogWrite(LmotorB,0);
        break;
      }
      if (mydata.right <= -50) {
        analogWrite(RmotorA,min(abs(mydata.right),255));
        analogWrite(RmotorB,0);
        break;
      } else if (mydata.right >= 50) {
        analogWrite(RmotorA,0);
        analogWrite(RmotorB,min(abs(mydata.right),255));
        break;
      } else {
        analogWrite(RmotorA,0);
        analogWrite(RmotorB,0);
        break;
      }
      if (mydata.up <= -50) {
        analogWrite(UmotorA,min(abs(mydata.up),255));
        analogWrite(UmotorB,0);
        break;
      } else if (mydata.up >= 50) {
        analogWrite(UmotorA,0);
        analogWrite(UmotorB,min(abs(mydata.up),255));
        break;
      } else {
        analogWrite(UmotorA,0);
        analogWrite(UmotorB,0);
        break;
      }
    }
    switch (mydata.arm) {
      case 0:            //"arm close"
        analogWrite(ArmmotorA,200);
        analogWrite(ArmmotorB,0);
        break;
      case 1:            //"arm brake"
        analogWrite(ArmmotorA,200);
        analogWrite(ArmmotorB,200);
        break;
      case 2:            //"arm open"
        analogWrite(ArmmotorA,0);
        analogWrite(ArmmotorB,200);
        break;
      default:
        analogWrite(ArmmotorA,0);
        analogWrite(ArmmotorB,0);
        break;
    }
  } 
  //you should make this delay shorter then your transmit delay or else messages could be lost
  delay(150);
}
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
EasyTransfer.cpp
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#include "EasyTransfer.h"




//Captures address and size of struct
void EasyTransfer::begin(uint8_t * ptr, uint8_t length, HardwareSerial *theSerial){
    address = ptr;
    size = length;
    _serial = theSerial;
   
    //dynamic creation of rx parsing buffer in RAM
    rx_buffer = (uint8_t*) malloc(size);
}

//Sends out struct in binary, with header, length info and checksum
void EasyTransfer::sendData(){
  uint8_t CS = size;
  _serial->write(0x06);
  _serial->write(0x85);
  _serial->write(size);
  for(int i = 0; i<size; i++){
    CS^=*(address+i);
    _serial->write(*(address+i));
  }
  _serial->write(CS);

}

boolean EasyTransfer::receiveData(){
 
  //start off by looking for the header bytes. If they were already found in a previous call, skip it.
  if(rx_len == 0){
  //this size check may be redundant due to the size check below, but for now I'll leave it the way it is.
    if(_serial->available() >= 3){
    //this will block until a 0x06 is found or buffer size becomes less then 3.
      while(_serial->read() != 0x06) {
        //This will trash any preamble junk in the serial buffer
        //but we need to make sure there is enough in the buffer to process while we trash the rest
        //if the buffer becomes too empty, we will escape and try again on the next call
        if(_serial->available() < 3)
            return false;
        }
      if (_serial->read() == 0x85){
        rx_len = _serial->read();
        //make sure the binary structs on both Arduinos are the same size.
        if(rx_len != size){
          rx_len = 0;
          return false;
        }
      }
    }
  }
 
  //we get here if we already found the header bytes, the struct size matched what we know, and now we are byte aligned.
  if(rx_len != 0){
    while(_serial->available() && rx_array_inx <= rx_len){
      rx_buffer[rx_array_inx++] = _serial->read();
    }
   
    if(rx_len == (rx_array_inx-1)){
      //seem to have got whole message
      //last uint8_t is CS
      calc_CS = rx_len;
      for (int i = 0; i<rx_len; i++){
        calc_CS^=rx_buffer[i];
      }
     
      if(calc_CS == rx_buffer[rx_array_inx-1]){//CS good
        memcpy(address,rx_buffer,size);
        rx_len = 0;
        rx_array_inx = 0;
        return true;
        }
       
      else{
      //failed checksum, need to clear this out anyway
        rx_len = 0;
        rx_array_inx = 0;
        return false;
      }
       
    }
  }
 
  return false;
}
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
EasyTransfer.h
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 #ifndef EasyTransfer_h
#define EasyTransfer_h


//make it a little prettier on the front end.
#define details(name) (byte*)&name,sizeof(name)

//Not neccessary, but just in case.
#if ARDUINO > 22
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "HardwareSerial.h"
//#include <NewSoftSerial.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <avr/io.h>

class EasyTransfer {
public:
void begin(uint8_t *, uint8_t, HardwareSerial *theSerial);
//void begin(uint8_t *, uint8_t, NewSoftSerial *theSerial);
void sendData();
boolean receiveData();
private:
HardwareSerial *_serial;
//NewSoftSerial *_serial;
uint8_t * address;  //address of struct
uint8_t size;       //size of struct
uint8_t * rx_buffer; //address for temporary storage and parsing buffer
uint8_t rx_array_inx;  //index for RX parsing buffer
uint8_t rx_len;        //RX packet length according to the packet
uint8_t calc_CS;       //calculated Chacksum
};



#endif
 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
IOPinsCB.h
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#define LmotorA             3  // Left  motor H bridge, input A
#define LmotorB            11  // Left  motor H bridge, input B
#define RmotorA             5  // Right motor H bridge, input A
#define RmotorB             6  // Right motor H bridge, input B

#define UmotorA             5  // Up motor H bridge, input A
#define UmotorB             6  // Up motor H bridge, input B
#define ArmmotorA             5  // Up motor H bridge, input A
#define ARmmotorB             6  // Up motor H bridge, input B